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Abstract

Creeping rays can give an important contribution to the solution of medium to high frequency scattering problems.
They are generated at the shadow lines of the illuminated scatterer by grazing incident rays and propagate along geodesics
on the scatterer surface, continuously shedding diffracted rays in their tangential direction.

In this paper, we show how the ray propagation problem can be formulated as a partial differential equation (PDE) in a
three-dimensional phase space. To solve the PDE we use a fast marching method. The PDE solution contains information
about all possible creeping rays. This information includes the phase and amplitude of the field, which are extracted by a
fast post-processing. Computationally, the cost of solving the PDE is less than tracing all rays individually by solving a
system of ordinary differential equations.

We consider an application to mono-static radar cross section problems where creeping rays from all illumination
angles must be computed. The numerical results of the fast phase space method and a comparison with the results of
ray tracing are presented.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

The general problem that we are interested in is the scattering of a time-harmonic incident field by a
bounded scatterer D. If the total field is split into an incident and a scattered field, this can be formulated
as a boundary value problem for the scattered field in the region outside D, consisting of the Helmholtz
equation,
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augmented with Dirichlet, Neumann or Robin boundary conditions on the boundary of the scatterer oD, and
the Sommerfeld radiation condition at infinity. Here n(x) is the index of refraction, and x is the angular
frequency.
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In direct numerical simulations of (1) the accuracy of the solution is determined by the number of grid
points or elements per wave length. The computational cost to maintain constant accuracy grows algebraically
with the frequency, and for sufficiently high frequencies, a direct numerical simulation is no longer feasible.
Numerical methods based on approximations of (1) are needed.

Fortunately, there exist good such approximations precisely for the difficult case of high frequency solu-
tions. In free space, a typical high frequency solution can be approximated by a simple wave,
W ðxÞ � aðxÞeix/ðxÞ; x 2 R3; ð2Þ

where the amplitude a(x) and the phase function /(x) depend only mildly on the parameter x and vary on a
much coarser scale than W(x) itself. Geometrical optics (GO) considers the case when x!1. The frequency
then disappears from the model and the equations can be solved at a computational cost independent of x.
GO can be formulated as the partial differential equations for / and a. The phase function / satisfies the eik-

onal equation,
jr/j ¼ nðxÞ; ð3Þ

and the leading order amplitude term a satisfies the transport equation,
2r/ � raþ D/a ¼ 0. ð4Þ

GO can also be formulated in terms of ordinary differential equations (ODE). It corresponds to solving the
eikonal equation (3) through the method of characteristics, i.e. solving the system of ODEs,
dx

dt
¼ rpHðx; pÞ; dp

dt
¼ �rxHðx; pÞ; Hðx; pÞ ¼ jpj

nðxÞ ; ð5Þ
where t is time. As long as / is smooth, the relationship between the models is given by /(x(t)) = /(x(0)) + t.
There are also ODEs giving the amplitude a(x(t)) along the characteristics.

The main drawbacks of the infinite frequency approximation of geometrical optics are that diffraction
effects at boundaries are lost, and that the approximation breaks down at caustics, where the predicted ampli-
tude a is unbounded. Geometrical theory of diffraction (GTD), pioneered by J. Keller in the 1950s [14], adds
diffraction effects to the GO approximations. One type of diffracted rays are creeping rays, which are generated
at the shadow line of the scatterer, i.e. where the incident ray strikes the surface of the scatterer at grazing
angle. At this point the incident ray divides into two parts: one part continues straight on, and a second part
propagates along geodesics on the surface, continuously shedding diffracted rays in its tangential direction. See
Fig. 1. In analogy with (2), a wave field is generated on the surface
W sðuÞ ¼ aðuÞeix/ðuÞ; ð6Þ
where /(u) and a(u) are now the surface phase and amplitude and u 2 R2 is a parameterization of the surface.
The creeping rays satisfy a system of ODEs similar to (5). They are related to (6) in the same way as the stan-
dard GO rays are related to (2).

Creeping rays can give an important contribution to the solution at medium to high frequencies, for
instance in radar cross section (RCS) computations for low observable objects [3] and in antenna coupling
problems [16]. We want to compute the creeping rays and the associated wave field in (6).

Various methods have been devised to compute the geometrical optics solution. They can be divided into
Lagrangian and Eulerian methods.

Lagrangian methods are based on the ODE formulation (5). The simplest Lagrangian method is standard
ray tracing where the ODEs in (5) together with ODEs for the amplitude are solved directly with numerical
methods for ODEs. This approach is very common in standard free space GO, [4,19], but is also done for the
creeping ray case, [12,22]. Ray tracing gives the phase and amplitude solution along a ray, and interpolation
must be applied to obtain those quantities everywhere. This can be rather difficult, in particular in regions
where rays cross. Another problem with ray tracing is that it may produce diverging rays that fail to cover
the domain. Even for smooth n(x) there may be shadow zones where the field is hard to resolve. The interpo-
lation can be simplified by instead using so-called wave front methods [30,11]. They are related to ray tracing,
but instead of individual rays, an interface representing a wave front is evolved according to the ray equations.



Fig. 1. Diffraction by a smooth cylinder. Top figure shows the solution schematically. The incident field uinc induces a creeping ray uc at
the north (and south) pole of the cylinder, where the incident direction is orthogonal to the surface normal. As the creeping ray propagates
along the surface, it continuously emits surface-diffracted rays ud with exponentially decreasing initial amplitude. Bottom figure shows real
part of a solution to the Helmholtz equation. The surface diffracted waves can be seen behind the cylinder.
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More recently, Eulerian methods based on PDEs have been proposed to avoid some of the drawbacks of
ray tracing. These methods discretize the PDEs on fixed computational grids to control accuracy everywhere
and there is no need for interpolation. The simplest Eulerian methods solves the eikonal and transport equa-
tions (3,4). This technique has been used in standard GO, [29,28,7] and also in the surface case, [15]. However,
the eikonal and transport equations only give the correct solution when it is a single wave of the form (2).
When there are crossing waves, more elaborate schemes must be devised. In the free space GO case a number
of methods have been developed in the last ten years using different approaches. Many of them are based on a
third formulation of geometrical optics as a kinetic equation set in phase space. They include ‘‘big’’ ray tracing
[1], patching together multiple eikonal solutions [2], moment methods [24,25,9], segment projection method
[6], level set methods [21,23], slowness matching [26], the phase flow method [31] and fast phase space methods
[8]. A survey of this research effort is given in [5].

These more advanced methods have so far not been used for the creeping ray case. In this paper we propose
an adaptation of the fast phase space method of Fomel and Sethian [8] to this case. This method is compu-
tationally expensive if only a few solutions are computed. It becomes attractive when the solution is sought for
many different sources but with the same index of refraction. In the creeping ray case this happens for instance
when the solution for all illumination angles of a fixed scatterer is of interest. We consider one such example:
computing the mono-static RCS.
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Following [8] we formulate the ray propagation problem as a time-independent partial differential equation
(PDE) in a three-dimensional phase space. We use a fast marching method to solve the PDE. The PDE solu-
tion contains information for all incidence angles. The phase and amplitude of the field are extracted by a fast
post-processing. Computationally the cost of solving the PDE is less than tracing all rays individually. If the
surface is discretized by N2 points the complexity is OðN 3 log NÞ, while ray tracing would cost OðN 4Þ if a com-
parable number of incidence angles (N2) and rays per angle (N) are considered.

In Section 2, we formulate the governing equations. The numerical method for solving the equations are
discussed in Section 3. In Section 4, we show how to extract the information for a particular ray through
post-processing. An application to a mono-static RCS problem is shown as an example in Section 5.
2. Governing equations

For simplicity we consider the case when the scatterer surface has an explicit parameterization. Let X be a
regular hypersurface, representing a scatterer surface, with the parametric equations X ¼ X ðuÞ, where
X ¼ ðx; y; zÞ 2 R3 is the coordinate in 3D physical space, and the parameters u = (u,v) belong to a bounded
set X � R2. Let the scatterer be illuminated by incident rays in a direction represented by a normalized vectorbI ¼ ½ı1; ı2; ı3�. The shadow line is then defined as the set of points where
bN >bI ¼ 0; ð7Þ
where bN ðuÞ is the surface normal at X ðuÞ,
bN ¼ X u � X v

jX u � X vj
. ð8Þ
Here the subscripts denote differentiation with respect to u and v. We will assume that (7) defines a curve in
parameter space, which we denote u0(s), and s is the arc length parameterization.

2.1. Geodesics

We start by deriving the equations for creeping rays, which are indeed geodesics on the scatterer surface.
According to Keller and Lewis [13], the surface phase satisfies the surface eikonal equation,
j er/j ¼ n; ð9Þ

where n(u) is the index of refraction at the surface, and er is the surface gradient, defined as
er/ :¼ JG�1r/; G ¼ J>J ;
with
J ¼ ½X uX v� 2 R3�2.
We prescribe boundary conditions for (9) on the shadow line, which acts as the source for the creeping rays.
The boundary condition is that the surface phase agrees with /inc, the phase of the incoming wave,
/ðu0ðsÞÞ ¼ /0ðu0Þ :¼ /incðX ðu0ðsÞÞÞ; ð10Þ

To avoid ambiguities as to which direction the surface waves propagate, we add the condition
er/ðu0ðsÞÞ ¼ r/incðX ðu0ðsÞÞÞ; ð11Þ

which is consistent with (9) since /inc satisfies the free space eikonal equation (3) and with (10) since
d

ds
ð/ðu0ðsÞÞ � /incðX ðu0ðsÞÞÞÞ ¼ r/>u00 �r/>inc

dX
ds
¼ ðJ> er/Þ>u00 �r/>inc

dX
ds
¼ ð er/�r/incÞ

> dX
ds

.

In the case when n = 1 and the incoming wave is a plane wave in direction bI , we have /incðxÞ ¼ bI>x. Then (10),
(11) reduce to



280 M. Motamed, O. Runborg / Journal of Computational Physics 219 (2006) 276–295
/0ðu0ðsÞÞ :¼ bI>X ðu0ðsÞÞ; er/ðu0ðsÞÞ ¼ bI . ð12Þ

We can write (9) as a Hamilton–Jacobi equation H(u,$/) = 0, with the Hamiltonian
Hðu; pÞ � 1

2
p>G�1ðuÞp� n2ðuÞ

2
.

Note that in the case n = constant, the geometrical rays associated with the eikonal equation (3) becomes
straight lines. Analogously, for the surface eikonal equation (9), the creeping rays for constant n are geodesics,
or shortest paths between two points on the surface. Henceforth, we will assume n ” 1 and a plane incoming
wave.

Introducing a parameter s, the bicharacteristics (u(s), p(s)) are determined by the solution of the following
Hamiltonian equations
_u ¼ H p ¼ G�1p; ð13aÞ
_p ¼ �H u. ð13bÞ
Here the dot denotes differentiation with respect to the parameter s. At the shadow line, the initial direction of
the geodesic should be parallel to the incident field. We demand that
d

ds
X ðuðsÞÞ

����
s¼0

¼ bI .
This implies that pð0Þ ¼ G _uð0Þ ¼ J>J _uð0Þ ¼ J> _X ð0Þ ¼ J>bI . The initial condition for the system (13) therefore
reads,
uð0Þ ¼ u0ðsÞ; ð14aÞ
pð0Þ ¼ p0ðsÞ :¼ J>ðu0ðsÞÞbI . ð14bÞ
We note that by (12),
pð0Þ ¼ J>ðu0ðsÞÞ er/ðu0ðsÞÞ ¼ J>JG�1r/ðu0ðsÞÞ ¼ r/ðuð0ÞÞ.
As for any Hamiltonian system it therefore follows that
pðsÞ ¼ r/ðuðsÞÞ; ð15Þ

for all s P 0, as long as / is smooth. As a consequence, (13) and (15) give
j _X j ¼ dX
ds

����
���� ¼ jJ _uj ¼ jJH pj ¼ jJG�1pj ¼ 1; ð16Þ
and we can identify the parameter s with arc length along the creeping rays X ðuðsÞÞ. In this case, the system of
four first-order ODEs (13) can be written as a system of two second-order equations [13],
€uþ C1
11 _u2 þ 2C1

12 _u _vþ C1
22 _v2 ¼ 0; ð17aÞ

€vþ C2
11 _u2 þ 2C2

12 _u _vþ C2
22 _v2 ¼ 0. ð17bÞ
Here Ck
ijðuÞ are Christoffel symbols, defined by
Ck
ij ¼

X2

m¼1

1

2
gkm½ðgjmÞi þ ðgimÞj � ðgjiÞm�;
where (gij) = G and (gij) = G�1, and subscripts 1 and 2 denote differentiation with respect to u and v,
respectively.

Now if we set _u ¼ du
ds ¼ q cos h and _v ¼ dv

ds ¼ q sin h, then _v ¼ _u tan h, and by differentiating with respect to s,
€v ¼ €u tan hþ _u
1

cos2 h
_h. ð18Þ
Moreover by (16),
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q ¼ qðu; v; hÞ ¼ J
cos h

sin h

� �����
����
�1

¼ jX u cos hþ X v sin hj�1.
Let c:¼(u,v,h). Using (18), we get
_h ¼ qðcÞVðcÞ;

where
VðcÞ :¼ ðC1
11 cos2 hþ 2C1

12 cos h sin hþ C1
22 sin2 hÞ sin h� ðC2

11 cos2 hþ 2C2
12 cos h sin hþ C2

22 sin2 hÞ cos h.
Therefore the system of ODEs (17), for geodesics, reduces to
_u

_v
_h

0
B@

1
CA ¼

qðcÞ cos h

qðcÞ sin h

qðcÞVðcÞ

0
B@

1
CA ¼: gðcÞ. ð19Þ
2.2. Phase and amplitude

Let us now derive the ODEs for the surface phase / and amplitude a. As before, we parametrize the creep-
ing ray with the arc length s in the physical space. In the surface field associated with the creeping ray (6), the
phase function /(u(s)) and the amplitude a(u(s)) of the field vary with the distance s along the ray.

From (13) and (15) it follows that the phase of the geodesic satisfies the ODE,
d/ðuðsÞÞ
ds

¼ r/ � _u ¼ r/ � G�1r/ ¼ j er/j2 ¼ 1; /ð0Þ ¼ /0ðu0Þ. ð20Þ
Hence, the phase is the length of the ray.
Now consider a narrow strip of a creeping ray, starting at the incident point Q0 on the shadow line and

propagating along a geodesic on the scatterer surface. See Fig. 2.
To determine an equation for the amplitude, we apply the optical form of energy conservation principle in a

small interval from s to s + ds, [18], and get
d

ds
½aðsÞ2drðsÞ� ¼ �2aðsÞ½aðsÞ2drðsÞ�; ð21Þ
where dr(s) is the width of the strip at distance s from Q0, and a(s) is an attenuation factor. Solving (21) gives
us
aðsÞ ¼ a0

dr0

dr

� �1
2

exp �
Z s

0

aðrÞdr
� �

; ð22Þ
where a0 and dr0 are the amplitude and strip width at Q0, respectively. There are thus two parts in this equa-
tion which we can treat separately: the attenuation, represented by the exponential, and the geometrical
spreading of the creeping ray, represented by dr

dr0
.

dσ

dττ

Q 0

Fig. 2. A narrow strip of a creeping ray on the surface.



282 M. Motamed, O. Runborg / Journal of Computational Physics 219 (2006) 276–295
2.2.1. Attenuation

We will here show that the attenuation can be obtained by solving an ODE coupled to the geodesic system
(19).

The attenuation factor a is given by [18,20],
a ¼ q0

qg

exp i
p
6

� � xqg

2

� �1=3

:¼ x1=3ea.
Here q0 � 2.33811 is the smallest positive zero of the Airy function, and qg is the radius of curvature of the
surface with respect to arc length along the ray trajectory, given by [10],
qg ¼
1

�bT >Du
bN _u

; bT ¼ dX
ds
ðuðsÞÞ ¼ J _u.
Here, bT is the tangent vector to the surface in the geodesics direction, and Du
bN ¼ ½bN u

bN v� is the Jacobian of the
normal vector bN . Note that jbT j ¼ 1 by (16). Since bT , bN and _u are functions of (u,v,h), so is ea ¼ eaðu; v; hÞ. We
can therefore add the ODE
db
ds
¼ eaðu; v; hÞ; bð0Þ ¼ 0; ð23Þ
to the geodesic system (19), and then express the attenuation as
exp �
Z s

0

aðrÞdr
� �

¼ expð�x1=3bðsÞÞ.
Note that b is independent of the frequency x.

2.2.2. Geometrical spreading

To compute the amplitude of the creeping ray from (22), we also need to compute the geometrical spread-
ing. We consider again a narrow strip of a geodesics, as in Fig. 2, and let dr0(s) and dr(s,s) be the strip width
at the shadow line and at the distance s from the shadow line, respectively.

Set euðs; sÞ :¼ uðsÞ, where (u(s),p(s)) is a solution to (13) with the initial data (14) so that euðs; 0Þ ¼ u0ðsÞ.
Moreover, let
eX ðs; sÞ :¼ X ðeuðs; sÞÞ.

Then eX is the point on the geodesic at the distance s from the shadow line, and eX 0ðsÞ ¼ eX ðs; 0Þ is the starting
point on the shadow line. Denote the geometrical spreading of the creeping ray at the point eX ðs; sÞ in the phys-
ical space by
Qðs; sÞ :¼ drðs; sÞ
dr0ðsÞ

.

Moreover, let dr00 and dr 0 be the strip width in the direction of the shadow line, defined by dr00 ¼ jeX 0sjds and
dr0 ¼ jeX sjds. See Fig. 3. Then we have
cos b0 ¼
dr0

dr00
¼
eX ?0s

jeX ?0sj
�
eX 0s

jeX 0sj
; ð24Þ

cos b ¼ dr
dr0
¼
eX ?s
jeX ?s j �

eX s

jeX sj
; ð25Þ
where the s- and s-subscripts denote differentiation along the ray and the shadow line, respectively, and eX ?s is
orthogonal to eX s in the tangent plane to the surface. Since j eX ?0s j¼j eX ?s j¼ 1 by (16), the geometrical spread-
ing is then computed as,
Qðs; sÞ ¼
eX ?s � eX seX ?0s � eX 0s

. ð26Þ
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Fig. 3. Geometrical spreading of a creeping ray on the surface, starting at the shadow line and ending at the boundary.
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We will show how to calculate the right hand side of (26) numerically, below.

2.3. Eulerian formulation

There are a number of drawbacks with Lagrangian methods based on solving the ODEs (19), (20) and (23).
In particular, in the regions where rays diverge or cross, interpolation can be difficult. Instead, we use an Eule-
rian formulation and derive time-independent PDEs, which can be solved on a fixed computational grid.

We introduce the phase space P ¼ R2 � S, where S is the periodic sphere. We consider the triplet
c = (u,v,h) as a point in this space. The geodesics on the scatterer are then confined to a subdomain
Xp ¼ X� S � P in phase space.

Let us now introduce an unknown function F : P! P,
Fi
F ðcÞ ¼
UðcÞ
V ðcÞ
HðcÞ

0
B@

1
CA; ð27Þ
which is the point where the geodesic starting at u = (u,v) 2 X with direction h 2 S will cross the boundary of
Xp. See Fig. 4. Since F is constant along a geodesic, we have
0 ¼ d

ds
F ðuðsÞ; vðsÞ; hðsÞÞ ¼ du

ds
F u þ

dv
ds

F v þ
dh
ds

F h. ð28Þ
,

,

g. 4. A geodesic in the parameter space. The function F is defined as F(u,v,h) = (U,V,H), with the notation as in the figure.
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Using (28) and (19), we can write the escape PDE for F as
cos hF u þ sin hF v þVðcÞF h ¼ 0; c 2 Xp; ð29Þ

with the boundary condition at inflow points, i.e., the points on oXp at which geodesics are out-going,
F ðcÞ ¼ c; c 2 oXinflow
p .
Note that inflowing characteristics correspond to out-going geodesics.
Now we define a surface phase U : P! R, such that U(c) is the distance traveled by a geodesic starting at

the point u with direction h before it hits the boundary of Xp. Using (20), we can derive the PDE for U as
cos hUu þ sin hUv þVðcÞUh ¼
1

qðcÞ ; c 2 Xp; ð30Þ
with the boundary condition at inflow points
UðcÞ ¼ 0; c 2 oXinflow
p .
In the same way we define a function B : P! R as the b-value of a geodesic starting at the point c 2 Xp

when it hits the boundary of Xp. We then use (23) and derive the PDE for B as
cos hBu þ sin hBv þVðcÞBh ¼
eaðcÞ
qðcÞ ; c 2 Xp; ð31Þ
with the boundary condition at inflow points
BðcÞ ¼ 0; c 2 oXinflow
p .
For the geometrical spreading we consider a fixed shadow line c0(s) = (u0(s),v0(s),h0(s)) and like in Section
2.2.2 we define
euðs; sÞ ¼ uðsÞ; evðs; sÞ ¼ vðsÞ; ehðs; sÞ ¼ hðsÞ;

where (u,v,h) solves (19) with initial data (u0(s), v0(s),h0(s)). Setting ec ¼ ðeu;ev; ehÞ we thus have
ecs ¼ gðecÞ; ecðs; 0Þ ¼ c0ðsÞ;

with g defined in (19).

For a given shadow line, the creeping rays will lie on a submanifold of phase space P which we define as
Lðc0Þ ¼ fecðs; sÞ : s P 0g. We then introduce the function Q : Lðc0Þ ! R as
Qðecðs; sÞÞ :¼ Qðs; sÞ.
which is a Eulerian version of the geometrical spreading, restricted to Lðc0Þ. We will use the following simple
Lemma.

Lemma 1. The Jacobian DcF ðcÞ 2 R3�3 has rank two for all c 2 Xp where it is well-defined. Its null space is

spanned by g(c).

Proof 1. That DcF(c)g(c) = 0 is just a restatement of (29). Suppose DcF(c)v = 0 and construct a curve
c0ðsÞ � P satisfying c0(0) = c and c00ð0Þ ¼ v. Let ecðs; sÞ be defined for this curve in the same way as above.
Then d

ds F ðc0ðsÞÞ ¼ 0 for s = 0. Moreover, since DcF(c) is well-defined there is a differentiable function bsðsÞ
such that F ðc0ðsÞÞ ¼ ecðs;bsðsÞÞ in a neighborhood of s = 0. Together this means that
0 ¼ d

ds
ecðs;bsðsÞÞ����

s¼0

¼ ecsð0;bsð0ÞÞ þ bs0ð0Þecsð0;bsð0ÞÞ. ð32Þ
Since �bs0ð0Þecsð0; sÞ is a solution to the ODE ðecsÞs ¼ DcgðecÞecs for s = 0, uniqueness of ODE solutions implies
that (32) holds for all s P 0, in particular
ecsð0; 0Þ þ bs0ð0Þecsð0; 0Þ ¼ 0 () v ¼ �bs0ð0ÞgðcÞ.
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Hence, if v is in the nullspace, then it is parallel to g(c), and the nullspace is thus one-dimensional. h

In order to compute Q we first find a solution z = z(s,s) to
DcF ðecÞz ¼ d

ds
F ðc0ðsÞÞ. ð33Þ
We note that F ðecðs; sÞÞ ¼ F ðc0ðsÞÞ for all s P 0, so this z satisfies
DcF ðecÞz ¼ DcF ðecÞecs.
By Lemma 1 we therefore get
zðs; sÞ ¼ ecs þ agðecÞ ¼ ecs þ aecs;
for some a and since eX s ¼ bT ðecÞ by (16), we have
½bT ðecÞ � bN ðeu;evÞ�>Jðeu;evÞez ¼ eX ?s � ðeX s þ aeX sÞ ¼ eX ?s � eX s;
where ez 2 R2 contains the first two components of z. Consequently, since bT ðc0ðsÞÞ ¼ bI ,
QðecÞ ¼ ½bT ðecÞ � bN ðeu;evÞ�>Jðeu;evÞez
½bI � bN ðu0ðsÞÞ�> eX 0sðsÞ

: ð34Þ
On the boundary, when ec 2 oXp we can simplify the computation and avoid solving for z in (33). LetbX : R! R3 be defined by bX ðsÞ :¼ X ðUðc0ðsÞÞ; V ðc0ðsÞÞÞ with U, V defined in (27). As in the proof of Lemma
1 there is a function bsðsÞ such that
bX ðsÞ ¼ eX ðs;bsðsÞÞ. ð35Þ

After differentiating (35) with respect to s, we get
bX sðsÞ ¼ eX sbs0ðsÞ þ eX s.
Therefore, for ec on the boundary, i.e. ec ¼ F ðc0Þ,
QðecÞ ¼ ½bT ðecÞ � bN ðeu;evÞ�> bX sðsÞ
½bI � bN ðu0ðsÞÞ�> eX 0s

. ð36Þ
Note that bX sðsÞ can easily be computed from the numerical solution to the PDE (29).

3. Numerical solution of the PDEs

All PDEs (29)–(31) are of the general form
af u þ bf v þ cf h ¼ dðu; v; hÞ; ð37Þ

which are time-independent hyperbolic equations.

In the phase space P, the direction of characteristics at the points on the boundary determines if boundary
conditions are needed at that point. We assign boundary conditions at the points where a characteristic is in-
going. For example a characteristic is in-going if _u ¼ q cos h > 0 on the left boundary and if _v ¼ q sin h > 0 on
the lower boundary. More precisely, suppose X is the unit square and �p < h 6 p. Then we prescribe bound-
ary condition on oXinflow

p given by
oXinflow
p ¼ u ¼ 0; jhj < p

2

n o[
u ¼ 1; jh� pj < p

2

n o[
fv ¼ 0; h > 0g

[
fv ¼ 1; h < 0g.
We always use periodic boundary conditions in the h direction.
To solve these equations, we use a Fast Marching algorithm, given by Fomel and Sethian [8]. We let

f = (F,U,B) and discretize the phase space domain Xp ¼ X� S uniformly, setting ui = iDu, vj = jDv and
hk = kDh, with the step sizes Du ¼ Dv ¼ 1

N and Dh ¼ 2p
N . Then by solving the PDEs (37), we get the approximate

solution
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fijk ¼ ðF ijk;Uijk;BijkÞ � ðF ðui; vj; hkÞ;Uðui; vj; hkÞ;Bðui; vj; hkÞÞ.

The complexity is OðN 3 log NÞ. See [8] for more details.

4. Post-processing

To extract properties like phase and amplitude for a ray family, post-processing of the solution to the
escape PDEs (37) is needed. It is based on the following simple observation. By the uniqueness of solutions
of ODEs,
F ðc1Þ ¼ F ðc2Þ;

if and only if the points c1 and c2 lie on the same geodesic.

As an example, suppose we want to compute the surface phase at a point on the scatterer, when the scat-
terer is illuminated. We assume that the shadow line c0(s) = (u0(s),v0(s),h0(s)) is known. For each point
(u,v) 2 X covered by the surface wave there is at least one creeping ray passing that point starting at the sha-
dow line c0(s). By the argument above, we can thus find s = s*(u,v) and phase angle h = h*(u,v), as the solution
to
F ðc0ðsÞÞ ¼ F ðu; v; hÞ. ð38Þ

The phase at (u,v) is then given by
/ðu; vÞ ¼ /0ðu0ðs	ÞÞ þ Uðc0ðs	ÞÞ � Uðc	Þ; c	 ¼ ðu; v; h	Þ;

with /0 as in (12). Note that c* is now in the submanifold Lðc0Þ which was defined in Section 2.3. There may be
multiple solutions (s*,h*) to (38), giving multiple phases.

We now introduce a function A : Lðc0Þ ! R as the amplitude at the point c 2 Lðc0Þ on the geodesic starting
at the shadow line c0(s). By (22) we can write
Aðc	Þ ¼ A0Qðc	Þ
�1
2 exp �x

1
3ðBðc0ðs	ÞÞ � Bðc	ÞÞ

� �
;

where A0 is the amplitude at the point c0(s*), and Q(c*) is computed by (34).
The main difficulty here is to solve (38). We now show how to solve it. Since F = (U,V,H) is a point

on the phase space boundary oXp, it can be reduced to a point (S,H) in R2. For example in a rectangular
domain X, Fig. 5, we choose S 2 [0, 2p] along oX to be zero at the lower left corner, p at the upper right
corner, and 2p again at the lower left corner. Now the left and right hand sides of (38) are curves in R2

parameterized by s and h, and solving the algebraic equation (38) amounts to finding crossing points of
these curves. See Fig. 5.
,

,

Left figure shows a geodesic in a rectangular domain in the parameter space and the choice of S on the boundary. Right figure
two crossing curves. One curve is for all points on the shadow line, parameterized by s. The other curve is for a single point in the
eter space with all directions, parameterized by h.
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Numerically, we discretize the parameterization of the shadow line in N grid points {sm}, m = 1, . . . , N.
For each point {u0(sm)} on the parameter space shadow line, the ray direction h0(sm) at the shadow line is
computed using the fact that the tangential vector bT to the hypersurface at the point c0(sm) should be in
the same direction as the incident angle bI :
0

1

2

3

4

5

6

v

Fig. 6.
param
bT ðc0ðsmÞÞ ¼ bI . ð39Þ

After obtaining the discretized phase space shadow line {c0(sm)}, we then interpolate the approximate solution
fijk (available on a regular grid) to find the approximate solution on the shadow line:
ef sm ¼ ðeF sm ; eUsm ; eBsmÞ � ðF ðc0ðsmÞÞ;Uðc0ðsmÞÞ;Bðc0ðsmÞÞÞ.

Having the discretized solution on the shadow line and at the point (u,v) 2 X for all N directions h 2 [0, 2p], we
then need to find crossing points of two complex lines of N straight line segments. These crossing points will
then be the solutions to (38). The amount of work to do this is proportional to N, by using a monotonic sec-
tions algorithm; see e.g. [27]. For all N2 points on the surface the computational cost for finding crossing
points will then be OðN 3Þ. The complexity to solve the PDEs using the Fast Marching method is
OðN 3 log NÞ. Therefore the total complexity will be OðN 3 log NÞ.

If we only need to compute the field for one shadow line, it could be done faster. For example by using wave
front tracking or solvers based on the surface eikonal equation, the complexity is OðN 2Þ. But there are appli-
cations when we need the field for many shadow lines. In such cases, using the Fast Marching method can be
much faster. We will show one such application in the next section.
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Ray propagation on the shadow zone of an ellipsoid. Top figures show the creeping rays (left) and iso-phase curves (right) in the
eter space between two shadow lines. Bottom figure shows the iso-phase curves and the shadow line (bold) in the physical space.
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As an example, in Fig. 6, the iso-phase curves are shown for an ellipsoid illuminated by incident rays in
direction bI ¼ ½0; 1; 0�. In the shadow zone between the two shadow lines, there are either one, two or three
phases. As it can be seen, multiple phases can be captured. The solution here is computed by the Fast March-
ing method on a 1203 grid and using the post-processing described above.
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Fig. 7. Shadow line in the physical and parameter space: (a) shadow line in (x,y,z)-space; (b) shadow line in (u,v)-space.
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5. An application to mono-static RCS computations

Mono-static RCS is a measure of backscattered radiation in the direction of incident waves, when an
object is irradiated. Normally most part of it consists of direct reflections, but for not too high frequencies
there are situations where creeping rays can give important contribution [3]. The rays that propagate on the
surface of the scatterer and return in the opposite direction of incident waves are called backscattered creep-

ing rays.
In this section we apply the fast phase space method on a scattering problem and compute the contri-

bution of the backscattered creeping rays to RCS. For simplicity we only consider the amplitude on the
scatterer, ignoring the effect of diffraction coefficients and geometrical spreading outside the scatterer.
We assume that the incoming amplitude is one on the shadow line and compute the backscattered ampli-
tude on the shadow line before the ray leaves the scatterer. We compare the results with standard ray
tracing.

5.1. Scattering problem

As a test case we consider a hypersurface X ¼ X ðu; vÞ which is a patch of an ellipsoid with the following
parametric equations:
x ¼ �r1 cos u;

y ¼ r2 sin u cos v;

z ¼ r3 sin u sin v;
where r1 = 2, r2 = 1, and r3 = 0.5 are the ellipsoid’s semiaxes. Notice that in order to avoid the irregularity at
the points (±r1,0,0), we cut off these points from the parameter space.

First, we need to compute the shadow lines on the scatterer. For this hypersurface we can find them ana-
lytically. By (7) and (8), the shadow line corresponding to the incident direction bI ¼ ½ı1; ı2; ı3� is given by
ı1r2r3 cos u0ðsÞ � ı2r1r3 sin u0ðsÞ cos v0ðsÞ � ı3r1r2 sin u0ðsÞ sin v0ðsÞ ¼ 0.
The ray directions h0(s) at the shadow line are then computed using (39). For example, in Fig. 7 the shadow
line is shown for bIk½0:9; 1; 0:1� in physical and parameter space, respectively.
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Fig. 9. Length of the backscattered creeping rays for many illumination angles.
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5.2. Finding the backscattered rays

The goal is to find the length and amplitude of the backscattered creeping rays for different incident angles.
In order to find the backscattered creeping rays, we use post-processing as before. A backscattered ray starting
at point s1 and ending at point s2 on shadow line should satisfy
F ðcðs1ÞÞ ¼ F ðcðs2ÞÞ þ C; ð40Þ

where the constant C accounts for the fact that the upper and lower boundaries in the parameter space coin-
cide on the hypersurface. It means that the points with S = p, . . . , 3p/2 should be changed to S = p/2, . . . , 0
and at the same time their H values should be added by p. The reason for adding by p is that we need to re-
verse the direction of the geodesic starting at s2. Notice that we only consider the geodesics which hit the upper
and lower boundaries, because the left and right boundaries are indeed artificial boundaries, introduced to
avoid the irregularity.

As before, the right and left hand sides of (40) are curves in R2 parameterized by s, and to find the back-
scattered ray we need to find crossing points of these curves. Fig. 8(a) shows the intersecting curves in the
(S,H)-plane for the points on the shadow line corresponding to geodesics hitting the lower and upper bound-
aries in parameter space, c.f. Fig. 5. Fig. 8(b) shows the creeping rays starting at all N points on the shadow
line and the backscattered ray (bold line).

5.3. Length and amplitude of backscattered ray

The length and amplitude of the backscattered creeping rays are computed by a third order interpolation of
the solution to the PDEs (37). For a given incident direction bI ¼ ½ı1; ı2; ı3�, the horizontal and vertical incident
angles are calculated as
Fig. 10. Amplitude of the backscattered creeping rays for many illumination angles for x = 1.



Fig. 11. The backscattered creeping rays for four different illumination angles and two different frequencies. Left figures show the
backscattered rays in the physical space by bold solid lines. The view direction is in the illumination direction, so that the shadow line is the
outer most curve around the ellipsoid. Right figures show the backscattered rays in the parameter space. Shadow lines here are shown by
dashed lines. The amplitudes for x = 1 and x = 20 are denoted by a1 and a20, respectively. (a) w1 = 0, w2 = 0, length = 2.44, a1 = 0.022;
(b) w1 = 0, w2 = 56, length = 2.43, a1 = 0.044; a20 = 2.40 · 10�5; (c) w1 = 58, w2 = 0, length = 2.89, a1 = 0.010; a20 = 6.84 · 10�6; (d) w1 =
58, w2 = 56, length = 2.16, a1 = 0.012; a20 = 8.73 · 10�6.
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w1 ¼ arctan
ı1

ı2

� �
; w2 ¼ arctan

ı3

ı2

� �
.

They vary from �60� to 60�. Fig. 9 shows the length for different incident angles.
For computing the geometrical spreading, we again use the fact that the upper and lower boundaries of the

doman X in the parameter space coincide on the hypersurface. Therefore, one can consider a new domain eX
consisting of two domains X on top of each other, connected by the boundary v = 0. The creeping ray starting
at the point cðs1Þ in the upper domain continues in the lower domain and hits the shadow line at the pointecðs2Þ ¼ cðs2Þ þ C, with C ¼ ð0;�2p; pÞ. Now, let eF be the escape location and direction on oeX for the

extended doman eX. We will have eF ðcðs1ÞÞ ¼ F ðF ðcðs1ÞÞ þ eCÞ � eC and eF ðecðs2ÞÞ ¼ F ðecðs2Þ þ eCÞ � eC whereeC ¼ ð0; 2p; 0Þ. We can then use (34) to compute the geometrical spreading Qðecðs2ÞÞ at the point ecðs2Þ from
the starting point cðs1Þ The amplitude is computed by
Aðcðs2ÞÞ ¼ Aðcðs1ÞÞðQðecðs2ÞÞÞ
�1
2 exp �x

1
3ðBðcðs1ÞÞ þ Bðcðs2ÞÞÞ

� �
:

Fig. 10 shows the amplitude for different incident angles. For some incident angles, the geometrical spreading
of the creeping ray becomes zero, These rays are called caustic backscattered creeping rays, and their amplitude
is infinite at the shawod line. However, away from the scatterer their contribution is bounded because of geo-
metrical spreading outside the scatterer. Note that in Fig. 10 the amplitudes larger than a certain value are not
shown.

Fig. 11 shows the backscattered creeping rays in the physical and parameter space for four different incident
directions.

5.4. Convergence and complexity

We use a first order Fast Marching algorithm. Fig. 12 shows the length U(u,p,p/2) obtained using a coarse
mesh of the size 603 and a fine mesh of the size 1203. We compare the solution with a reference solution
obtained by a high order accurate Ray tracing method. It confirms the first order accuracy of the Fast March-
ing algorithm.
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Fig. 13. Length and amplitude (at x = 1) of the backscattered ray for different horizontal incident angles w1 and a fixed vertical incident
angle w2 = 6. Solutions of Fast Marching algorithm converge to a reference solution obtained by Ray tracing as we use a finer grid. (a)
Length; (b) amplitude

M. Motamed, O. Runborg / Journal of Computational Physics 219 (2006) 276–295 293
The convergence of the length and amplitude (at x = 1) of the backscattered creeping ray is shown in
Fig. 13 for a fixed vertical incident angle w2 = 6� and different horizontal incident angles w1. Although the rel-
ative error is worse for the amplitude than for the phase, the rate of convergence confirms the first-order accu-
racy of the method. The accuracy of amplitude can be improved either by using a higher order fast marching
method or by computing the geometrical spreading Q directly by using another ODE instead of numerically
differentiating the functions U and V with respect to u, v and h to compute bX sðsÞ in (36) as done in [17,31].

The complexity of using the fast phase space method proposed here consists of two parts. First, the cost of
solving the PDEs by the Fast Marching method is OðN 3 log NÞ. Second, the cost of finding the backscattered
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rays for each shadow line is OðNÞ. For all N2 shadow lines, it is OðN 3Þ. Therefore the total complexity will be
OðN 3 log NÞ. The total cost by using other methods, like wave front tracking and solvers based on the surface
eikonal equation, will be OðN 4Þ, if the cost for each shadow line is OðN 2Þ. In this case, using the Fast Marching
method will then be much faster.

6. Conclusion

We have presented a new phase space method for computing creeping rays in an Eulerian framework. We
have formulated the ray propagation problem as a set of time-independent PDEs in a three-dimensional phase
space. To solve the PDEs we have used a first-order fast marching method. Properties like phase and ampli-
tude for a ray family as well as wavefronts can be extracted through a fast post-processing. The method is
computationally attractive when the solution is sought for many different sources but with the same index
of refraction, for example in RCS computations.

In this paper, the surface is assumed to be represented by a single parameterization. In future work, we plan
to extend the method to be applicable to more complicated and realistic geometries which can be represented
by multiple parameterizations. The information can then be extracted by combining multi-patches through a
post-processing. Moreover, we will use a higher order method in order to increase the accuracy.
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